JCuda vectorized and parallelized computation strag¢gy for solving integral
equations in electromagnetism on a standard persohaomputer

C. Rubeck, B. Bannwarth, O. Chadebec, B. Delinghkft Yonnet and J-L. Coulomb
Grenoble Electrical Engineering Laboratory (G2Elab)
Grenoble INP — Université Jospeh Fourier - CNRS UB2R9
38402 Saint Martin d'Héres Cedex, France
christophe.rubeck@g2elab.grenoble-inp.fr

Abstract — In this paper, we present a computation strategy
in order to solve integral equations in electromagetism.
Nowadays, Graphics Processing Units (GPU) can beuiad in
any standard and recent computers. This paper propes to use
these units in order to improve the computation sped of a
problem solved thanks to integral method. The Javdanguage
and the JCuda library, not so common in our scienfic
community have been used and we report a speed-up 3 times
for the solving of an electrostatic problem.

I. INTRODUCTION

Integral equation methods (IEM) are currently wydel
used in electromagnetic modeling. Unlike the firdtement
method (FEM), they do not require the meshing ofi-no
active materials like air. However, they are basadthe
computation of electromagnetic interactions betwedin
elements (i.e. full interaction). Therefore, thegad to fully
dense systems of equations. They are well knowbeto
easily parallelizable because of the independente o
interactions. Moreover, the interest of IEM hassidarably
increased since the emergence of acceleration oethah
as the fast multipole method (FMM). In this kind of
algorithm, near and far field interactions are safel.
While far fields computations are highly acceledatsy
FMM, the near field interaction is treated claskycaln
particular, full near field matrices have to be paned with
a high performance strategy in order to keep thamtdge
of using FMM.

In this work, we focus on the implementation of a
parallelized and vectorized full matrix interaction
computation strategy, developed on a standard pearso
computer equipped with a CUDA capable GPU [1]. The
main software is developed thanks to Java langsagie
use of the JCuda library enables GPU interfacimgctly
from Java [2]. The choice of using Java can seerheto
surprising for intensive computations, but the o$ethis
language enables robust and fast software develupraad
performance are not so bad in comparison with most
commonly used language like C++ [3].

In a first step, a high-performance vectorized matr
library has been developed in our lab showing thatuse
of Java can be competitive for numerical matrix
manipulation. In a second step, we use the gragdnid of
our computer to speed-up the computation time. To
illustrate this work, we present numerical resulesaling
with the resolution of a classical electrostatiolgem (i.e.
the computation of charge distribution on the siefaf a
perfect conductor).

Il. CHARGE DENSITY COMPUTATION

We consider a perfect conductor in free space &dsoc
to a known potential/,. To compute the charge density in
electrostatics, we have to solve the following gnéd
equation:

1 o
V,=——||.—dS
° 47EOISr @

Where S is the surface of the conductoris the charge
density, &, is the vacuum permittivity and r is the distance
between the point where the potential is expre¢sadhe
conductor) and the integration point.

The surface is meshed into a set of triangle patchiee
system of equations is generated using a point himagc
approach with 0-order shape function. This mettsodery
simple but has already shown its accuracy for sghguch
problem. Once the set of equations is obtained,ftlie
interaction problem is solved by a LU decomposition

Ill. VECTORIZEDJAVA COMPUTATION

In (1), if we consider that S is meshed into N s;elle
have to compute N integrals on N cells. This is \inye
needed to do that increase iA. INloreover, integrals of (1)
are sometime numerically singular (in particular the
computation of the interaction of an element omrlfitso
when r is very small). The use of analytical foram[4] to
evaluate the kernel of (1) is then preferred bugséh
computations can be time-consuming.

In our approach, we prefer to compute integralakbdo
a numerical Gauss integration technique. With saah
approach, we have three overlapped loops in owrighn:

// Loop 1: on all the N elements
For i=0,1,...N// can be parallelized if multi-CPU
// Loop 2: interaction of one element with all the N elements
For j=0,1,...N
/I Loop 3: Gauss integration
For k=0,...number of Gauss points
Integral(i,j) += 1/r(i,j,k) * weight(k) * jacolan(k)
End
End
End

Let us note that it is possible to change the oadghe
loops and let us remember that all the interactiars
independent. To improve the computation speed, ge a
going to vectorize a loop with a high number oferes:

// Loop 1: on all the N elements
For i=0,1,...N// can be parallelized if multi-CPU
/I Loop 2: Gauss integration
For k=0,1,...N
/I Vectorized interaction of one element with all elements
Integral(i,:) += 1/r(i,:,k) * weight(k:) * jacolain(k:)
End

Enc

An optimized vectorized Java matrix package hasbee
developed in our laboratory. It is based on comtigu
memory storage of the matrix, adapted indexes aackon
matrix manipulation commands.

Before computing the matrix, a pre-processing eded.
A table is generated containing all the coordinatés
elements Gauss points in the main referential. giloeess
is repeated for the Gauss weights and jacobian.

In a final step, let us remember that artificialgsilarities
have been introduced with the numerical processfiX\ie
by correcting the diagonal coefficients by the wiiehl
solution. More sophisticated and more precise ctioe
techniques will be discussed in the full paper.

IV. PARALELLISED JCUDA IMPLEMENTATION

Thanks to JCuda library, it is possible to call CAJD
functions from Java. A Java GPU matrix library leen
developed. It enables the management of the GPUonyem
allocation, the data transfer between it and thst @PU,
matrix manipulations and the call of CUDA kernels.

Performances in CUDA programming are better if the
algorithm is massively parallel, therefore we hate
compute the matrix with a high number of threadee T
chosen approach allocates one thread to each dtitara
So, there are XN threads defined. Each thread contains
only the Gauss integration loop. This approach esyv
simple but has shown a good efficiency. Some
optimizations on GPU architecture dealing with tlee of
shared memory will be discussed in the full paper.

Like previously, Gauss point, jacobian and weigtitieés
are generated on the CPU, then they are sent tgrépdic
card which returns the integration matrix. Currngnthe
diagonal correction is still operated by the CPU.

V. PRELIMINARY RESULTS

We have tested our approach on personal computer

equipped with a GeForce 320M that is CUDA capalile.
contains 48 graphical cores and 250MB of shared angm
The CPU is an Intel C2D 2.4 GHz with 4GB of RAM.€Th
operating system (MacOS 10.6) is full 64 bits. ustotice
that this kind of computer is very classical ang kost.

In our example, a square plate iso-potential cotutud
by 1 cm) is modeled. This example is very simplé the
goal here is to evaluate the computation performanthe
host computer computation is performed in doubéeision
with 2 CPUs whereas the GPU device maximum supports
single precision. The numerical integration onrgias is
provided with 7 Gauss points.

The time of the interaction matrix computation orly
numerical integration is given for problems witHfelient

mesh sizes (fig. 1). Les us notice that the qualitythe
solution is only few influenced by the single pséan
conversion (less than 6e-5 % of error on chargsitgn

—4— CPUs

—s=— Mem. alloc. and conversion
—— + transfert data to device
—m— + Cuda kernel execution

—— + transfert result to host

—8— + conversion to double /

S 2
P
y

-

% —
M number of elements
10000

10000

1000

100

time (ms)

10

100 1000

Figure 1 : comparison of CPU and GPU (cumulatoghputation times.

First of all, the Java vectorized strategy seentsetguite
efficient and fast (less than 5s to compute a 4@000
fully dense matrix). As it was expected, the GPU
computation is faster than the CPU one. We nofead-up
of around 3 times in spite of the fact that thepgie card
used here is a very low cost one.

As expected, the time needed to transfer and cbtive
data from the graphic card to the computer decréase
performance of the algorithm. However, several waydo
it more efficiently have still to be studied.

The portability of the Java code has been tested o
win32 computer. After the setting of the JCudadilyy only
a recompilation of the Cuda kernel is needed toertake
experiments. We do not report a speed-up becawse th
graphic card (Quadro NVS 160M) only owns 8 cores.

VI. CONCLUSION AND PERSPECTIVES

We have reported in this paper a strategy for caimgu
electromagnetic fields on Java platform with theud&
library on a standard computer. These first resalts
maybe not so impressive, but these techniquestiiract
optimized and can be applied without buying addaio
hardware device. A far fields GPU-based FMM techaidp
currently under development to improve the speedhef
computation like in the presented near field corafion.

VIl. REFERENCES

[1] NVIDIA. (2010, Oct.) “NVIDIA CUDA programming guide
http://developer.download.nvidia.com/compute/cuda/®olkit/doc
s/CUDA_C_Programming_Guide.pdf

[2] M. Hutter, JCuda (Java bindings for CUDAjtp://www.jcuda.de/

[3] V. Reinauer, T. Wendland, C. Scheiblich, R. BanutDbject-
Oriented Development and Runtime Investigation ofD 3
electrostatic FEM problems in Pure Java”, ProcegdirCEFC 2010
Confrenece, to be publishedlBEE Trans. Mag.,2011.

[4] S. Rao, A. Glisson, D. Wilton, and B. Vidula, “Angble numerical
solution procedure for statics problems involvindi@ary-shaped
surfaces,”|EEE Trans. Antennas Propagat. vol. 27, no. 5, pp. 604—
608, Sep 1979.

